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ABSTRACT
The probability of photon measurement in some photon-counting instrumentation, such as the

Optical Monitor (OM) on the XMM–Newton satellite, and the Ultraviolet/Optical Telescope

(UVOT) on the Swift satellite, does not follow a Poisson distribution due to the detector

characteristics, but a binomial distribution. For a single-pixel approximation, an expression

was derived for the incident count rate as a function of the measured count rate by Fordham,

Moorhead & Galbraith. We show that the measured count rate error is binomial, and extend

their formalism to derive the error in the incident count rate. The error on the incident count

rate at large count rates is larger than the Poisson error of the incident count rate.

Key words: instrumentation: detectors – methods: data analysis – methods: statistical – tech-

niques: photometric.

1 I N T RO D U C T I O N

In recent years photon-counting detectors have come into operation

in for example the Ultraviolet/Optical Telescope (UVOT; Roming

et al. 2005) on the Swift gamma-ray bursts satellite, and the XMM
Optical Monitor (OM; Mason et al. 2001). The microchannel plate

intensified CCD (MIC) detectors used in these instruments have

been discussed by Fordham, Moorhead & Galbraith (2000). These

photon-counting detectors operate as follows: incoming photons

exit electrons on a photocathode. The electrons are amplified by a

stack of microchannel plates and then the amplified electron signal

is converted back to a light pulse using a phosphor screen. Below

this, a fibre bundle directs the light to a fast-scanning, frame-transfer

CCD. After each frame is readout, the resulting charge events in the

CCD are centroided by the on-board electronics.

At high incident fluxes, a photon-counting detector is limited due

to coincident photon arrivals in a single readout of the detector. This

represents a clear difference between the photon-counting technique

and measurements made by direct illumination of a CCD, which can

handle large fluxes, but has a higher background.

Normally, when measuring the number of counts arriving in a

certain time interval, little further thought is given to the statis-

tics of such a measurement, which were worked out long ago by

Poisson (1838). Indeed, photon-counting instrumentation, like pho-

tomultiplier tubes, are usually seen as an exemplary case of Poisson

statistics. However, due to the instrumental limitations imposed by

centroiding and event detection of the MIC detectors, no more than

a single event recording per pixel is possible in the smallest time-

slice of measurement. This handicap prevents the full distribution

of photon arrivals being sampled and thus the measurements are not
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Poissonian, though the incoming photons follow a Poissonian dis-

tribution. As a result the errors on the photometry from the UVOT

and OM do not follow Poisson statistics.

For each observation, however, one can derive the measurement

statistics, which we show in Section 2 to follow a binomial distri-

bution, and relate them to the Poisson distribution of the incident

photons. Based on the measured distribution and the functional re-

lation that it has to the incident Poisson distribution, we derive the

errors in the measurement and in the inferred incident photon count

rate in Section 2. This paper aims at providing the users of the UVOT,

OM and similar instruments, a proper way to estimate the errors in

their photometry.

2 T H E O RY

2.1 The mean number of incoming photons related
to the measured count

For the detectors of interest, an exposure will be for a certain time

period �T and consist of Nf time-slices usually called ‘frames’.

Exposing and reading out each frame takes a certain fixed time T f =
�T/Nf, called the frame-time. Since during readout of the detector

no incoming photons are detected, a fraction fd, called the dead time,

needs to be accounted for when determining the count rate.1

In the following, we will use variables for the total observation.

For example, observed counts refer to all observed counts during the

1 This is a simplification, since during the frame-transfer time, photons arrive,

and charge is deposited in the CCD, they can be centroided into events when

bright enough. The charge shunting process during frame transfer does lead

to charge from a star (a fixed-position source) being ‘smeared’ out and this

leads to readout streaks from bright stars.
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observation. This simplifies the treatment of the errors somewhat,

and conversion to commonly used count rates and their errors is

quite straightforward.

Now consider a single pixel. During an exposure Nf measurements

are taken from that pixel, measuring either 0 or 1 count per frame,

since coincident counts are recorded as a single event. It is here,

where the difference with a Poissonian measurement comes in, since

multiple detections in a single frame count only for one. We can use

that fact to relate the probability of observing 1 or 0 photons to the

fact that the incoming photons follow a Poisson distribution.

The Poisson probability that k incoming photons fall on one frame

is a function of the mean incident counts per frame μ:

P(k, μ) = e−μμk

k!
. (1)

The first two moments of the Poisson distribution are∑∞
k=0

P(k, μ) = 1 and
∑∞

k=0
k P(k, μ) = μ. The effective expo-

sure time is less than the elapsed time due to the dead time.

Therefore, the mean number of incoming photons Ci during the

observation relates to the mean probability of measurement as μ =
Ci(1 − f d)/Nf = α Ci/Nf, where α = (1 − f d) has been introduced

for notational convenience.

The measured number of photons in Nf frames, considering that

for k > 1 only one photon is counted, is

Co = Nf[0.P(0, μ) + 1.P(1, μ) + 1.P(2, μ) · · ·]. (2)

Using the equations above, this can be written as

Co/Nf = 1 − e−μ = 1 − e−αCi/Nf . (3)

This functionally relates the incoming counts to the measured

counts, and was originally derived by Fordham et al. (2000).

2.2 The error in the measured counts

We first show that the incident Poisson distribution leads to an ob-

served binomial distribution due to the coincidence loss in the mea-

surements, and then discuss the calculation of the measurement

errors.

If we had an instrument that would be able to record the incoming

photon distribution, the probability of recording m incident photons

in Nf frames is given by the Poisson distribution. In actuality, not

more than one photon can be measured per frame, so the distribu-

tion becomes modified in that term. Therefore, the probability of

recording m incident photons in Nf frames is given by

P̂(k; Nf, μ) =
(

Nf

k

)
P(0, μ)(Nf−k) P(m > 1; μ)k, (4)

where m reduces to k measured photons, since for each frame where

m > 1, only one count is recorded.

Substituting k for m, using equation (3), and defining for conve-

nience p = e−μ we can rewrite this as

P̂(k; Nf, p) =
(

Nf

k

)
p(Nf−k)(1 − p)k, (5)

which is indeed a binomial distribution. That means that the ob-

served counts are governed by a binomial distribution, and that er-

rors need to be accounted for accordingly.

The observed error in the mean number of counts in the observa-

tion Co for the binomial measured distribution will be determined

by the binomial error

σo =
√

Co(Nf − Co)/Nf. (6)

Using the observed error, the incident photon count rate error can

be derived using the non-linear equation (3), because the relation

has a 1–1 correspondence. Subtracting the mean count rate from

the count rate with a 1σ error added or subtracted, we obtain the

following expression relating the upper and lower error σ i in the

incident counts to the error in the observed counts (see Fig. 1):

σ+
i = − Nf

α
ln

(
1 + σo

Nf − Co

)
, (7)

σ−
i = − Nf

α
ln

(
1 − σo

Nf − Co

)
. (8)

For the highest incoming photon fluxes, the upper error becomes

larger than the lower error, but for frame rates less than 0.9, the error

is in a linear regime and they are nearly equal in absolute size.

3 D I S C U S S I O N

3.1 Asymmetry

For a point source with a certain count rate, the incoming counts

will fluctuate in a Poissonian sense around the mean. As discussed

in Section 2, the measured counts are binomial. Because of this,

the counts above the mean will be mapped into a smaller range of

observed count rate than those below the mean, which is ultimately

due to the coincidence loss. In this sense, the width of the distribu-

tion, as defined by σ o is not an equal measure for the area under

the distribution above and below the mean. We therefore need to

be careful when interpreting the standard deviation derived here,

especially for high-observed counts per frame values.

3.2 Mapping of the uncertainty range

There is a certain inherent width in the distribution of incoming

counts which results in Poissonian variation around the mean, usu-

ally expressed as the Poisson error. The question is how that error

relates to the final error in the measurement.

In the limit of a small number of counts per frame, they become

equal. For larger numbers of counts per frame they diverge, and the

measurement error, after being mapped back to the uncertainty range

in the incoming count rate, becomes dominant. Since the magnitude

of this effect is not very apparent from the theory above, an example

has been prepared in Fig. 2.

For simplicity, the number of observed counts has been set at

Co = 9600 for Nf = 10 000 frames (which would be about a 110-s

exposure in the default UVOT observing mode). The dead time is

assumed to give α = 0.985. Using the equations above, the incident

number of counts is then Ci = 32 679, with an associated Poisson

error of 181 counts. In the figure we place the incident counts and

its error on the top horizontal line. If we map the incident counts at

±1 σ to the measured values they come out to be seven counts

above and below the mean observed counts. The 1σ binomial error

on the observed counts, however, is 20, much larger than what would

be expected from the mapped-back incident distribution. Mapping

the measured counts at ±1σ from the measured counts back to the

incoming counts, it is readily seen that these have a much larger

spread than the incoming distribution. This effect becomes smaller

for lower ratios of Co/Nf. Please note that the values we chose for

our example have a high coincidence loss which makes these effects

more discernible.
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Figure 1. The ratio of the incident count rate normalized to the frame time

is shown as a function of counts per frame (=count rate/frame rate) along

with its error (dashed), see equation (7). For comparison, the error in the

Poisson limit has been plotted also. The assumed number of frames for error

computation was 4000.

Incident counts

Measured Counts 

9600

3267932498 3286032184 33200

9580 9593 9607 9620

1 σ  Binomial1 σ

1 σ1 σ Poisson

Figure 2. Schematic illustration of the effect of the coincidence loss on

the errors. The top line represents the incident counts, the bottom line the

measured counts. The error in the incident counts due to Poisson noise is

indicated and how it projects to the measured counts. The binomial error

on the measured counts has been indicated and how it maps to the incident

counts.

3.3 Confidence levels

Confidence levels measure what percentage of the distribution of the

measured quantity fall within certain limits. In a way they are more

useful than the standard deviation in the presence of asymmetries,

because they provide information on the reliability of the measure-

ment. It is well known how to determine confidence levels for the

measured count rate, because it follows the well-known binomial

distribution (Gehrels 1986). However, the values reported are the in-

cident count rates which bear a non-linear relation to the measured

ones. Likewise, a certain confidence level in the measured count rate

will not imply the same level in the incident count rate, precisely

because of the asymmetry mentioned above. The effect is largest at

the highest count rates, where we showed by example above, that the

measured distribution is much broader than the incident (Poisson)

distribution. As a result, at high count per frame rates, the uncer-

tainties in the measured count rate dominate those in the derived

incident count rate. Also, in the limit of a low number of counts per

frame the binomial confidence levels on the measured counts will

approach the confidence levels of the Poisson-distributed incident

counts because the distributions are identical in the low limit. The

coincidence-loss correction at the limit of low counts is also negligi-

ble. This suggests that using the confidence limits for the measured

binomial counts will be a good approximation for the confidence

limits on the derived incident count rate.

3.4 Background

In general, for low count rates the effects from coincidence loss are

negligible. This is especially true for the background. However, it

was found that in some UVOT observations a correction for coinci-

dence loss to the background was necessary and had an impact on the

net source rates derived. Since the background is diffuse in nature,

the arguments brought forward for considering the coincidence loss

in diffuse situations by Fordham et al. (2000) need to be taken into

account. They discussed this case in terms of the coincidence-loss

area over which coincidence loss acts and the exposure area. Their

equation reverts to the single pixel case for the background.

It is therefore important to realize that the expressions above,

which were derived in the single-pixel approximation, need to be

applied with caution to the background. If the measurement back-

ground area covers more than one CCD pixel, a normalization to

the coincidence area, which is presumably one CCD pixel, needs

to be made to apply the formulas above. For example, if a phys-

ical pixel has 8 × 8 subpixels, the normalization is as follows. If

CB background counts were measured from a region of X subpix-

els, X larger than 64 subpixels, then the coincidence-loss correction

for the background should be based on 64CB/X counts. In practice,

the correction is not as firmly known as that because the centroiding

may make the coincidence area larger or smaller. The UVOT FTOOLS

software uses 78 subpixels which was chosen because that is close

to the theoretical value and also the pixel area that was used to derive

the empirical coincidence-loss correction (see Section 3.5).

3.5 The single-pixel approximation

The coincidence-loss formula under the single-pixel approximation

has been very successful in predicting the correct rates in the UVOT

(Poole et al. 2007). Other support for the use of the single-pixel

approximation to calculate the coincidence-loss effect on the ob-

served count rate comes from studies during the construction of the

detectors (Fordham et al. 2000) and the implementation of the cen-

troiding (Michel, Fordham & Kawakami 1997). The measurement

algorithm locates the centre of the photon splash, which generally

falls across two–three CCD pixels, and has an accuracy of a small

fraction of a CCD pixel (allowing recording of UVOT and OM data

with an accuracy of 1/8 of the physical CCD pixel size). Anomalies

are rejected using four out of nine CCD pixels. As a result, the ac-

tion of coincident photons is distributed over several pixels on the

detector and are also folded through a screening algorithm. The net

effect turns out to be a strengthening of the single pixel approxima-

tion, although the exact size of the coincidence-loss region, and its
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relation to the physical CCD pixels, is still under study. Were the

detections really independent single-pixel measurements, then it is

easy to show that photon splashes which would fall in different ways

over pixel boundaries would reduce the effects of coincidence loss

by 10–20 per cent at high count rates. In reality, a small upwards

empirical correction of the order of 6 per cent is found to be needed

to the theoretical single-pixel rate in the UVOT (Poole et al. 2007)

and OM, which is perhaps due to loss of some measurements of truly

coincident, but slightly displaced, photons. Those could distort the

symmetry of the electron splash on the detector sufficiently to be

screened out as bad data.

3.6 Dead-time accounting

In the original formulation of the coincidence-loss correction

(Fordham et al. 2000) the effects of the detector dead time in

each frame were discussed but were not explicitly included in the

coincidence-loss correction equation. As a result, early corrections

for the coincidence loss did not include this term. Since the current

formulation includes this term, no further correction for dead time

is needed after application of equation (3).

3.7 Photometric packages

Currently most astronomical photometry software, like IRAF and

DAOPHOT, may incorrectly report the error for measurements like

these, because generally the assumption is made that the photo-

metric measurements are dominated by Poisson noise. That is con-

sidered a good assumption for photomultiplier and normal CCD

measurements. As we show in Fig. 2, the Poisson measurement er-

ror underestimates the error in these photon-counting instruments

affected by coincidence loss.

4 C O N C L U S I O N S

We have shown in this paper how to derive the error in measurements

made with photon-counting detectors of the type used in the Swift
UVOT and XMM OM instruments. By comparing to the Poisson

error usually used in photometry we make clear how significant this

effect can be, and consider that users of these instrument must use

our formalism to derive the errors in their measurements.
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